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ABSTRACT

Using recent helioseismological data, Kosovichev has shown that half of the tachocline lies within the convective
zone (CZ). Previous theoretical models suggested that it lies outside the CZ. We propose a new model whereby
the tachocline originates within the CZ and/or in that part of the overshooting region where the convective flux
is still positive. The key ingredients of the model are shear, vorticity, and buoyancy. We find that (1) shear alone,
(2) shear 1 vorticity, and (3) shear 1 buoyancy are unable to reproduce the measured Reynolds stresses at the
surface of the Sun. The key ingredients are vorticity 1 buoyancy, both of which are missing in previous models.
Without carrying out a detailed numerical calculation, we estimate the thickness of the tachocline to be 0.053
(in units of the solar radius) compared with Kosovichev’s value of . The next step is the numerical0.09 5 0.04
solution of the equations.

Subject headings: convection — Sun: interior — Sun: rotation — turbulence

1. INTRODUCTION

Helioseismological data (Thompson et al. 1996) show that
a surface-like differential rotation (v) persists through theQ̃
entire convective zone (CZ) and that near the lower base of
it, there is a transition to solid-body rotation, 5 constant.Q̃
The region of rapid change, the tachocline, has a thickness
h that Kosovichev (1996) has shown to be (in units of solar
radius)

h 5 0.09 5 0.04. (1a)

The same data also show that the endpoint of the CZ adiabatic
stratification is located at

0.713 5 0.003. (1b)

Thus, the midpoint of the tachocline is located only slightly
below the convective zone, at

0.692 5 0.005. (1c)

Half of the tachocline is therefore within the CZ.
Spiegel & Zahn (1992, hereafter SZ) assumed that the tach-

ocline lies in the stably stratified region below the CZ. The
new result (eq. [1c]), together with the accepted notion that
differential rotation and buoyancy are intimately related and
the fact that differential rotation gets smoothed out where con-
vection also begins to weaken, makes it somewhat difficult to
visualize a tachocline that occurs independently of the CZ.

We suggest an alternative model whereby the tachocline orig-
inates where convection is still active: this includes the CZ
proper as well as the overshooting region where ∇ 2 ∇ ! 0ad

but the convective flux is positive (Canuto 1997b). The new
model differs from previous models in other important aspects.
These models make three basic assumptions: (1) the tachocline
lies below the CZ in the stably stratified region, (2) the source
of turbulence (Reynolds stresses tij) is the differential rotation
itself, and (3) the horizontal viscosity (vertical vis-n k nH V

cosity). The sequence of events can be formally represented as

˜ ˜Q(v) r t r Q(v), (1d)ij

and such models can only claim self-consistency, a bootstrap
approach. It is often stated that assumption 3 parallels that in
oceanic turbulence, creating the impression that one has a
strong basis to rely on. It is important to stress that this is not
quite so. In the ocean’s first ∼102 m (the mixed layer [ML],
broadly equivalent to the stellar CZ), turbulence is created by
wind stresses, and one can reliably compute nV; however, nH is
not computed but treated as a free parameter. Below the ML,
turbulence subsides considerably (up to a factor of ∼103), and
this is due to a variety of sources, primarily internal waves.
Contrary to the stellar case, the spectrum of the ocean internal
waves is known (Gargett et al. 1981), yet there is no agreement
on even the functional form of ( is the Brunt-22n 5 ceN N 1 0V

Väisälä frequency, e is the rate of dissipation of the turbulent
kinetic energy K) as various forms have been proposed: e ∼

, , and (Gargett & Holloway 1984;3/2 2KN e ∼ KN e ∼ (KN)
Moum 1996; Gregg 1989; Gargett 1990). In conclusion, in the
ocean case, in spite of a considerably rich trove of experimental
information about waves, dissipation rates, etc., the form of nV

below the ML is still an open question, while nH is treated as
an adjustable quantity. It thus seems hardly justified to use
ocean turbulence as a template for stellar turbulence, where
one has less data to check the consistency of one’s assumptions.
To give a concrete example, consider the SZ expression for h:

1/4x
h 5 0.03 . (1e)( )nH

Since, at the base of the CZ, cm2 s21 (Elliott7x 5 2 # 10
1997), in order to fit the observed value (eq. [1a]),

5 21n 5 2 # 10 cm s . (1f)H

The problem is not that of matching equation (1a), which is
trivially done with one free parameter in equation (1e), but to
show what equation (1f) implies. The Reynolds stresses tij are
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Fig. 1.—The Reynolds stresses measured at the surface of the Sun vs.u uv f

(co)latitude. Curve 1 represents the first two combinations in eqs. (3b), i.e.,
the first of eqs. (1g). They give almost the same result, which clearly does
not fit the data. Curve 2 represents the third combination in eqs. (3b), which
is equally unsatisfactory. Only the combination (3c) is able to reproduce the
data, curve 3.

usually assumed to be related to the “mean flow” field via the
relation or, specifically,t ∼ S

˜ ˜­Q ­Q
t 5 2n sin v , t 5 2n r sin v , (1g)vf H rf V

­v ­r

with . What do equations (1f) and (1g) entail? Wen ( nV H

rewrite the versus S relation ast

21 21( ) ( )K t 5 n K S S/S . (2a)H

Since K21 and S/S are of ∼O(1), it follows thatt n ∼H

. Since we can assume that production equals21 21˜KS ∼ KQ
dissipation ( ), with , we have a sec-2˜P 5 e P 5 2{tS} ∼ n QH

ond relation . Finally, since, in the presence of2˜e 5 n QH

strong stratification, the energy spectrum 1/2 22E(k) ∼ (eN) k
rather than the Kolmogorov regime, which holds at much
higher k’s, the resulting kinetic energy is , where1/2K ∼ (eN) l
l is the size of the largest eddy. Putting these three relations
together, we derive [ ]2 21N 5 gH (∇ 2 ∇ )p ad

2 25n ∼ l N, l ∼ 0.1 km ∼ 10 h. (2b)H

Is this l physically meaningful? Since we are unable to answer
the question, we are equally unable to assess the overall internal
consistency of the model. Finally, when equations (1g) are
applied to the solar surface, they do not fit the data (Gilman
& Howard 1984) (see Fig. 1).

2. NEW MODEL

The goals of the new model can be summarized as follows:
(a) test the new model in a region other than the tachocline
itself, (b) identify the source of turbulence so as to avoid a
bootstrap approach, (c) try to reproduce equaton (1a), (d) avoid
the use of adjustable parameters, and (e) understand physically
the consequences of the model (e.g., what is the new relation
[2b]?). Since we work within the CZ, we consider stratification
and a mean flow. Thus,

( ) ( )t 5 t S ,V ,h , h 5 h b ,t , (3a)ij ij ij i i i ij

where Sij, Vij, bi, and hi are the shear, vorticity, temperature
gradient, and convective flux . The explicit forms of′ ′h { u Ti i

equations (3a) can be found in Canuto, Minotti, & Schilling
(1994). To accomplish (a), we have solved equations (3a) using
only the partial combinations:

Shear, Shear 1 Vorticity, Shear 1 Buoyancy. (3b)

None of them reproduce the data (Fig. 1). The key ingredient
turns out to be the interaction

Buoyancy 1 Vorticity. (3c)

Thus, instead of equation (1d), we suggest the following chain
of events:

˜Buoyancy r t r Q(v). (3d)ij

The source of turbulence is buoyancy, which naturally gen-
erates tij (which in turn generates differential rotation through
the interaction [3d]). We have accomplished (a) and (b) above.

To accomplish (c), we should substitute the full form of tij

given by equations (3a), with all the constants computed from
within the same model, into the angular momentum equation

­
( )r sin v v 1 2r sin v Qxvf f­t

sin v ­ 1 ­
5 2 L 2 L ,rf vf2r ­r sin v ­v

3 2( ) ( )L { r t 1 v v , L 5 sin v t 1 v v . (4a)rf rf vf vfr f v f

Here , , and sin v are the meridional-azimuthal˜v v v 5 rQr v f

components of . We shall assume that the main result of thev
SZ model, equation (1e), remains valid provided one changes

, where xrr is the radial turbulent conductivity en-rrx r x 1 x
tering the convective flux (b is the superadiabatic temperature
gradient),

′ ′ rru T 5 x b . (4b)r r

The equation for the convective flux is given by equations (38a)
and (38b) of Canuto et al. (1994). As shown in that paper, the
solutions and of equations (3a) aret tvf rf

˜ ˜­Q ­Q˜t 5 F Q 1 F sin v 1 F sin vr , (4c)vf 1 2 3
­v ­r

˜ ˜­Q ­Q˜t 5 G Q 1 G sin v 1 G sin vr , (4d)rf 1 2 3
­v ­r

where the functions F and G (cm2 21) are given by equations
(53a)–(54e) of Canuto et al. (1994). Clearly, 2F2 and 2G3

correspond to the nH and nV in the SZ model. Using the nu-
merical results of Figures 4–8 (Canuto et al. 1994), we find,
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at a colatitude of 307,

12 2 ′2 2210 e 5 4e , 10 K 5 4e , u 5 210 e ,∗ ∗ r ∗2

1 ′2 23 ′ ′ 23 2 rr 21u 5 810 e , u u 5 610 e , 10 x 5 4e Q , (4e)v ∗ r v ∗ ∗ ∗2

where . Using Canuto et al.’s equation (53c) for1 21e 5 e Q∗ ∗ ∗2

nH, we find

rrx 5 10n , h 5 0.053. (4f)H

Considering that we have not carried out a numerical com-
putation of the full model, the value of h compares favorably
with equation (1a). It is important to stress that neither nH nor
xrr were chosen to fit equation (1a); rather, they were deter-
mined from within the model. This satisfies criterion d. If we
substitute nH into equations (2b), we obtain

3l ∼ 10 km ∼ 0.1h. (4g)

Equation (4g) seems physically more correct than equations
(2b). We also note that our nH is of the same order as that
obtained, for example, by Durney (1991). Two more consid-
erations are in order concerning the key role played by vorticity
Vij in equations (3a). First, since

˜ ˜V 5 22Q sin v 2 S , V 5 22Q cos v 2 S , (5a)rf rf vf vf

Vij introduces a novel feature: a term that depends on itselfQ̃
rather than on its derivatives. It was originally suggested on
empirical grounds (Biermann 1951; Rüdiger 1989), but here it
originates naturally when allowance is made for vorticity. Sec-
ond, within a standard turbulence model, to obtain ,n k nH V

one must include vorticity. In tensorial form, the functional
form of equations (3a) is

( )t 5 2n S 1 B 1 tV 1 Vt . (5b)T

Using a perturbative approach beginning with , one eas-0t ∼ S
ily obtains from equation (5b)

( )t 5 2g S 2 g t SV 2 VS 1) . (5c)1 2

We then have, using only the first term,

21­U ­U ­W ­U ­U
t ∼ g , t ∼ g 1 1 ∼ g . (5d)xx 1 xz 1 1( )[ ]­x ­z ­x ­z ­z

Since , or ( and Lh are the vertical­U/­x ∼ ­W/­z UL ∼ WL Lhv v

and horizontal length scales with ), the last relationL /L k 1h v

in equations (5d) follows. Thus, the first term in equation (5c)

can give only

n ∼ n . (5e)H V

Let us include vorticity. We now have

21 2­U ­U ­U
t 5 2g 1 1 g t 1 ) , (5f)xx 1 3 ( ) ( )[ ]­x ­z ­x

which yields the horizontal diffusivity

2tU
n ≈ 1 1 g . (5g)H 3 WL v

Similarly, one derives

1 ­U ­U ­U
t 5 2 g 1 1 g t , n ∼ 1 1 g t . (5h)xz 1 4 V 4( )2 ­x ­z ­x

Thus, finally,

2n LH h≈ k 1. (5i)( )n LV v

Thus, for , one needs vorticity, a conclusion in agree-n k nH V

ment with equation (3c), which requires vorticity on indepen-
dent grounds. The model is self-consistent.

3. NEW MODEL: MEAN TEMPERATURE EQUATION

The full model is made of equations (4a), the expressions
for tij and hi, and the equation for the mean T, which is usually
a simplified version of the complete equation (Canuto 1997a):

D
( )r c T 1 K 1 K 1 Gp vDt

­ ­pr c ke( )5 2 F 1 F 1 F 1 rt v 2 . (6a)i i i ij j­x ­ti

Here , and since the gravitational field GD/Dt { ­/­t 1 v ­/­xjj

does not depend on time, ; K and are the kineticDG/Dt 5 g v Ki i v

energies of the turbulent field and of the -field. In1K 5 t vii2

the right-hand side of equation (6a), we have the radiative,
convective, and turbulent kinetic energy ( )1ke ′ ′ ′F 5 ru u ui k k i2

fluxes, plus a new term representing the transport of the Rey-
nolds stresses by the large-scale velocity -field. Equation (6a)v
is the generalized Bernoulli equation that includes turbulence
and radiation. Equation (2.11) of SZ corresponds to equation
(6a) with

­pi i ke( ) ( )c T k K,K ,G , F k F ,F ,t v , 5 0. (6b)p r c i ijv j ­t

The new term in equation (6a) gives rise to terms of thev tijj

form with , , anda i 1 a i 1 a i a 5 2u t a 5 2u tr r v v f f r f rf v f vf

. Thus, in the radial component, the temperaturea 5 u tf f ff

equation will be supplemented by the term 2ru t 5f rf

.˜2rr sin vQtrf
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4. NEW MODEL: REYNOLDS STRESSES, CONVECTIVE FLUXES

The expressions for tij and hi in equations (3a) are given by
equations (37)–(38b) of Canuto et al. (1994). The turbulent
kinetic energy and the dissipation rate e are given by two dif-
ferential equations, equation (39a) and equation (44a) from
Canuto et al. One may make the equation for K algebraic, but
the differential equation for e should be kept because local
approximations introduce an undetermined mixing length.

5. CONCLUSIONS

Given the complexity of the problem, it is not surprising that
we have not yet reached a satisfactory picture of the tachocline.
SZ suggested the first model, but it may be difficult to reconcile
the picture of a tachocline outside the CZ with the new data
showing that half of it lies within the CZ. Furthermore, if the
tachocline lies below the CZ, the turbulent tij can no longer
be generated by convection; the burden then shifts to explain
the origin of tij and a viscosity smaller (Elliott 1997)3n ∼ 10H

than what the model yields (Zahn 1992).
We suggest that the tachocline may originate within the

CZ and/or in that part of the overshooting region where
but the convective flux is still positive (Canuto∇ 2 ∇ ! 0ad

1997b). This seems to alleviate several problems: the origin

of turbulence is no longer an issue since buoyancy generates
tij; through the buoyancy-vorticity interaction, the tij then
generate the ; one no longer has to “choose” a nH to fitQ̃(v)
equation (1a) since the value is determined from within the
model itself; the resulting thickness h is quite acceptable
even without a full solution of the model. From a physical
viewpoint, linking differential rotation with convection
seems quite natural for a variety of reasons: (i) we know
from helioseismological data that the differential rotation
gets smoothed out where convection itself begins to weaken,
and (ii) while shear goes abruptly to zero when 5˜ ˜Q(v) r Q
constant, vorticity goes smoothly into the rigid-body rota-
tion; joining the two regions thus seems more naturally ac-
complished with vorticity than with shear. Finally, the main
ingredients of the new model have been successfully tested
against measured data for both and at the surface˜t Q(v)vf

of the Sun. The value of the tachocline thickness h that we
have determined should be viewed only as a first justification
of the consistency of the model. The next step consists of
solving the new equations for , T, tij, and hi.Q̃

Thanks to M. J. Monteiro and R. B. Stothers for discussions
on this topic.
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